Joint estimation of activity and attenuation in TOF-PET

Ahmadreza Rezaei
• Attenuation Correction in PET
• Time of Flight (TOF) PET
 • Data collection
• Statistical Methods for Attenuation Correction in TOF-PET
 – MLAA
 – MLACF
 – MLRR
• Extension to Listmode
• Conclusion
• Transmission scans
 – Problem: cumbersome, and very time consuming

• High quality CT scans,
 – Facilitated by hybrid PET/CT scanners
 – Attenuation correction: projections of the “adjusted CT” (511 keV photon energy).
 – Problem: between-scan and in-scan motion.
 • PET and CT data are acquired sequentially.
 • Long acquisition time for the PET compared to the CT.

• Emission data (?!)
 – Useful: anatomical information not available, acquisition not possible
 – Joint activity and attenuation estimation

V. Panin, et al. 2011 NSSMIC.
• **Consistency Conditions**
 - Analytical Consistency Conditions
 • Natterer, *Inverse Problems* 1993
 • Welch et al, *IEEE TMI* 1997
 - Discrete Consistency Conditions

• **Iterative Schemes**
 - Can Time of Flight (TOF) improve the joint activity and attenuation reconstructions?!
 • De Pierro et al, *IEEE TNS* 2007
 • Salomon et al, *SNM* 2009
 - POCS, Least Squares
 • Censor et al, *IEEE TNS* 1979
 • Panin et al, *IEEE TNS* 2001

Cross-talk!
- Structures not preserved
- NOT quantitative
• Difference in photon arrival ($t_2 - t_1$)

• Time uncertainty (Δt)
 – Mainly due to detector properties
• Spatial uncertainty ($\Delta l = c \times \Delta t / 2$)

• Modeled by a Gaussian distribution
 – FWHM equal to spatial uncertainty

• Commercial TOF-PET systems
 • Biograph mCT: $\Delta t \approx 550$ ps $\leftrightarrow \Delta l \approx 8.25$ cm
 • Signa: $\Delta t \approx 400$ ps $\leftrightarrow \Delta l \approx 6.00$ cm
Tracer distribution
Activity
\(\lambda\)

Positron Emission Tomography (PET)
– *Data Collection with TOF*
Positron Emission Tomography (PET) – Data Collection with TOF

TOF Emission Data

\[Y_t(\lambda, \mu) = P_t(\lambda)e^{-P(\mu)} \]

Reconstruction problem: Find \(\lambda \)
Consistency Conditions

Can Time of Flight (TOF) improve the joint activity and attenuation reconstructions?!

- Yes, very significantly! 😊

Iterative Schemes

- Maximum Likelihood
 - Nuyts et al, IEEE TMI 1999
 - Laymon et al, IEEE NSS-MIC 2004
 - De Pierro et al, IEEE TNS 2007
 - Salomon et al, SNM 2009
- POCS, Least Squares
 - Censor et al, IEEE TNS 1979
 - Panin et al, IEEE TNS 2001

Cross-talk!
- Structures not preserved
- NOT quantitative
Can Time of Flight (TOF) improve the joint activity and attenuation reconstructions?!

- Yes, very significantly! 😊
- But the reconstructions are NOT quantitative! 😞
Joint Activity and Attenuation Estimation
– Statistical methods, MLAA

\[Y_t(\lambda, \mu) = P_t(\lambda)e^{-P(\mu)} \]

\[[\hat{\lambda}_{mle}, \hat{\mu}_{mle}] = \arg\max_{\lambda, \mu} L([\lambda, \mu], Y) \]

MLEM (Maximum Likelihood Expectation Maximization)

1: \(\mu^n, \lambda^{n+1} = \arg\text{inc}_{\lambda} L([\lambda, \mu^n], Y) \)

2: \(\lambda^{n+1}, \mu^{n+1} = \arg\text{inc}_{\mu} L([\lambda^{n+1}, \mu], Y) \)

MLTR (Maximum Likelihood algorithm for Transmission Tomography)

Joint Activity and Attenuation Estimation
– Statistical methods, MLAA

Scale?
– Enforcing expected tissue attenuation during reconstruction!
 • Tissue: 0.096 cm$^{-1}$
 • Bone: 0.170 cm$^{-1}$

* A. Rezaei, M. Defrise, G. Bal, C. Michel, M. Conti, C. Watson, and J. Nuyts,
“Simultaneous Reconstruction of Activity and Attenuation in Time-of-Flight PET”,
• Thorax scan
 – Duration: 5 minute scan
 – Tracer: 570 MBq 18F-FDG
 – Siemens Biograph mCT PET/CT

• MLAA
 – Scaled to have expected tissue attenuation

* Data courtesy of M. Conti from Siemens Medical Solutions, Molecular Imaging, Knoxville, TN 37932 US
Joint Activity and Attenuation Estimation

– Statistical methods, MLACF

\[Y_t(\lambda, A) = P_t(\lambda)A \]

\[[\hat{\lambda}_{mle}, \hat{A}_{mle}] = \arg\max_{\lambda, A} L([\lambda, A], Y) \]

MLEM (Maximum Likelihood Expectation Maximization)

1: \[A^n, \lambda^{n+1} = \arg\text{inc} L([\hat{\lambda}, A^n], Y) \]

2: \[\lambda^{n+1}, A^{n+1} = \arg\text{inc} L([\lambda^{n+1}, A], Y) \]

ACF update

Joint Activity and Attenuation Estimation
- **Statistical methods, MLACF**

Scale?
- More complex!
- Post-reconstruction of ACFs
- Addition of a vial of known activity?

MLACF

- Patient data

- Thorax scan
 - Duration: 4 minute scan
 - Tracer: 296 MBq 18F-FDG
 - Siemens Biograph mCT PET/CT

- MLAA
 - Scaled by total amount of activity

- MLACF
 - Scaled by total amount of activity

* Data courtesy of S.Stroobants, S.Staelens and M.Lambrechts from Universiteit Antwerpen.
MLACF
– Brain scan data

• Brain scan
 – Duration: 5 minute scan
 – Tracer: 296 MBq 18F-FDG
 – Siemens Biograph mCT PET/CT

• MLAA
 – Scaled by expected tissue attenuation

• MLACF
 – Scaled by total amount of activity
 – Attenuation estimate regularized

* Data courtesy of S.Stroobants, S.Staelens and M.Lambrechts from Universiteit Antwerpen.
MLACF

- Brain scan data
Joint Activity and Attenuation Estimation
– Statistical methods, MLRR

\[
Y_t(\lambda, M) = P_t(\lambda) e^{-P(M^o\mu)}
\]

\[
[\hat{\lambda}_{mle}, \hat{M}_{mle}] = \arg\max_{\lambda, M} L([\lambda, M], Y)
\]

MLEM (Maximum Likelihood Expectation Maximization)

1: \(M^n, \lambda^{n+1} = \arg\max_{\lambda} L([\lambda, M^n], Y)\)

2: \(\lambda^{n+1}, M^{n+1} = \arg\max_{M} L([\lambda^{n+1}, M], Y)\)

MLTR + demons

* A. Rezaei, C. Michel, M. E. Casey, and J. Nuyts.
“Simultaneous reconstruction of the activity image and registration of the CT image in TOF-PET.”
Joint Activity and Attenuation Estimation
– Statistical methods, MLRR

Scale?
– Automatically fixed!

• Thorax scan
 – Duration: 4 minute scan
 – Tracer: 296 MBq 18F-FDG
 – Siemens Biograph mCT PET/CT

• MLAA
 – scaled to have expected tissue attenuation

• MLACF
 – scaled by total amount of activity

• MLRR
 – No scaling required

* Data courtesy of S.Stroobants, S.Staelens and M.Lambrechts from Universiteit Antwerpen.
Extension to Listmode - MLAA

- Hoffman brain scan

MLACF 10:12

UMAP

TOF-MLEM

MLAA – ATT.

MLAA – ACT.
Extension to Listmode - MLACF
– Hoffman brain scan

\[
\lambda_j^{(n+1)} = \frac{\lambda_j^{(n)}}{\sum_i c_{ij} \frac{y_i}{p_i^{(n)}}} \sum_{it} c_{ijt} \frac{y_{it}}{p_{it}^{(n)}}
\]
Extension to Listmode - MLACF
– Hoffman brain scan & Motion

- 10 min scan with continuous motion
- M Bickell et al. “Rigid motion correction of PET and CT for a PET/CT scanner”, MIC2015, M5DP-124
• 10 min scan with continuous motion
• M Bickell et al. “Rigid motion correction of PET and CT for a PET/CT scanner”, MIC2015, **M5DP-124**
• **MLACF**: no time-averaged sensitivity image needed
• With Time-of-Flight PET data,
 – Simultaneous activity and attenuation estimation is possible!
 – Constant/Scale correction technique needed

• MLAA
 – Scale correction: expected tissue attenuation!

• MLACF
 – Fast compared to MLAA/MLRR
 – Scale correction: ?!

• MLRR
 – Makes use of high CT quality
 – Scale correction: automatically solved
• Joint Estimation methods in Gated TOF-PET
 – Mitigate the longstanding problem of attenuation correction
 – Extended MLACF in a Fully4D reconstructions framework

• Future work
 – Tracers with more focal activity uptake
 – Analysis of different flavors of JE methods
 • E.g. MLACF with Poisson or Gaussian ACF model, sMLACF, …
 – More quantitative studies on JE methods
 • MLAA, MLACF and MLRR
My sincere thanks to:

- **Johan Nuyts, Michel Defrise**, and my lab members at KU Leuven
- **Roger Fulton** and **J Kim** from the University of Sydney
- **Mike Casey, Vladimir Panin** and **Judson Jones** from Siemens Healthcare, Molecular Imaging for data processing and providing the data-based gating software.
- **Sigrid Stroobants, Steven Staelens** and **Michel Lambrechts** from the Universiteit Antwerpen and **Fernando Boada** and **Thomas Koesters** from NYU.
- **Christian Michel, Girish Bal, Frank Kehren, Maurizio Conti, Charles Watson** from Siemens Healthcare, Molecular Imaging,
- **Floris Jansen, Michel Tohme, Sangtae Ahn** from GE, and **Annemie Ribbens** from KU Leuven for the very insightful discussions.
- **You!** for your attention. 😊
A Quantitative study
– Monte Carlo Simulation

• Activity recons. scaled to have “known” total activity

• Monte Carlo simulation
 – NEMA-like phantom
 – Siemens Biograph mCT specs.
 – No scatter in emission data
A Quantitative study
 – Monte Carlo Simulation

- Activity recons. scaled to have “known” total activity
- Monte Carlo simulation
 - NEMA-like phantom
 - Siemens Biograph mCT specs.
 - With scatter in emission data

![Graph showing scale comparison between different methods]
- **MLTR** (Maximum Likelihood Transmission Reconstruction)

Sinogram

- Attenuation image
- Voxel-LOR intersection length
- Measured data

\[
\mu_j^{(n+1)} = \mu_j^{(n)} - \frac{\sum_i l_{ij} (y_i - \bar{y}_i^{(n+1)})}{\sum_i l_{ij} \bar{y}_i^{(n+1)} \sum_\xi l_{i\xi}}
\]

Listmode

- Measured LOR index

\[
\mu_j^{(n+1)} = \mu_j^{(n)} - \frac{\sum_i l_{im,j} - \sum_i l_{ij} \bar{y}_i^{(n+1)}}{\sum_i l_{ij} \bar{y}_i^{(n+1)} \sum_\xi l_{i\xi}}
\]

- Expected counts

\[
\bar{y}_i^{(n)} = a_i^{(n)} p_i^{(n)}
\]

- LOR index
- Attenuation
- Activity projection

ISRA-like algorithm

- Image Space Reconstruction Algorithm
- Back-projection of all events
- Subsets on all possible LORS
Listmode MLAA: MLTR + MLEM

- **MLAA** (Maximum Likelihood Activity and Attenuation reconstruction)

Sinogram

- Attenuation image
- Voxel-LOR intersection length
- Measured data

\[
\mu_j^{(n+1)} = \mu_j^{(n)} - \frac{\sum_i l_{ij} (y_i - y_i^{(n+1)}))}{\sum_i l_{ij} y_i^{(n+1)} \sum_\xi l_{ij}}
\]

- Voxel index
- Activity image
- Voxel-LOR sensitivity

\[
\lambda_j^{(n+1)} = \frac{\lambda_j^{(n)}}{\sum_i c_{ij} a_i^{(n)}} \sum_{it} c_{ijt} \frac{y_{it}}{p_{it}}
\]

Listmode

- Measured LOR index

\[
\mu_j^{(n-1)} = \mu_j^{(n)} - \frac{\sum_{i=1}^m l_{imj} - \sum_i l_{ij} y_i^{(n-1)}}{\sum_i l_{ij} y_i^{(n-1)} \sum_\xi l_{ij}}
\]

- Expected counts

\[
\bar{y}_i^{(n)} = a_i^{(n)} p_i^{(n)}
\]

- Activity projection

- LOR index
- Attenuation

- 2 sets of subsets in MLEM
- 3:1 attenuation-to-activity updates
• **MLACF** *(Maximum Likelihood Attenuation Correction Factors)*

\[
\lambda_j^{(n+1)} = \frac{\lambda_j^{(n)}}{\sum_i c_{ij} \frac{y_i}{p_i^{(n)}}} \sum_{it} c_{ijt} \frac{y_{it}}{p_{it}}
\]

\[
\lambda_j^{(n+1)} = \frac{\lambda_j^{(n)}}{\sum_{i_m} c_{i_m j} \frac{1}{p_{i_m}^{(n)}}} \sum_{i_m t_m} c_{i_m j t_m} \frac{1}{p_{i_m t_m}}
\]

- Back-projections are matched
- **ONLY** Sensitivity of measured events needed
- ACFs are not computed explicitly

Listmode

\[
y_i^{(n)} = a_i^{(n)} p_i^{(n)}
\]